1			Supporting	Informati	on			
2	Detection and C)ccurrence of	f Chlorinated By	y-product	s of Bispher	iol A, Nony	lphenol a	and
3	Estrogens in Dr	inking Water	r of China: Com	parison to	o the Parent	Compound	ls	
4								
5	¹ Laboratory for	Earth Surfac	e Processes, Co	llege of U	Urban and H	Environment	tal Scien	ces,
6	Peking Universit	y, Beijing 100	0871, China					
7	² State Key La	boratory of	Environmental	Aquatic	Chemistry,	Research	Center	for
8	Eco-Environmen	tal Sciences,	Chinese Academ	y of Scien	ces, Beijing	100085, Chi	ina	
9								
10								
11								
12	Text	1-7						
13	Figures)						
14	Tables	5						
15								
16								
17	Detailed descrip	otions of tar	get analytes, sy	nthesis, c	lansylation	procedure,	nonylphe	nol
18	standards and est	timation of m	atrix effects and	BPA equiv	alent estroge	enic activity	, Figures	and
19	tables addressing	g method vali	dation, parameter	s of drink	ing water tre	atment plan	ts (DWT)	Ps),
20	correlations betw	veen analytes	and parameters o	f DWTPs,	and between	n concentrat	ions of B	PA,
21	NP, estrogens an	nd their chlor	rinated by-produc	ets in sou	rce water ar	nd drinking	water of	all
22	DWTPs.							

Synthesis of Chlorinated By-products of BPA. The synthesis of chlorinated BPAs referred 23 to the method used to synthesize chlorinated BPS.¹ An aqueous solution of sodium 24 25 hypochlorite (1%, 10 ml) was added dropwise to a solution of BPA (300 mg) in 10 ml of 50% 26 methanol with stirring. The solution was stirred for 2 h at room temperature. After addition of saturated aqueous sodium sulfite, the solution acidified with 2M hydrochloric acid was 27 28 extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium 29 sulfate, and concentrated to 2 mL under reduced pressure. The residue was subjected to a 30 preparative HPLC (Waters 2690) with UV absorbance detector (Waters 2487) to isolate four chlorinated products, including monochloro-BPA, dichloro-BPA, trichloro-BPA and 31 32 tetrachloro-BPA. The UV detector was at 228 nm. The chromatographic separation was conducted by a Waters HR C18 column (6 μ m; 19 mm \times 300 mm) with acetonitrile (A) and 33 ultrapure water (B) were used as mobile phases. The column was maintained at 40°C, and the 34 35 flow rate and the injection volume were 6 mL/min and 500 µL, respectively. 10% A was increased to 100% in 90 min and kept for 10 min, followed by a decrease to initial conditions 36 37 of 10% A and held for 20 min to allow for equilibration. The synthesized products were 38 characterized by ESI-UPLC-MS and NMR spectra. Although 2,6'-dichloro-BPA and 39 2,6-dichloro-BPA could not be separated chromatographically, the structures and abundance ratio of 2,6'-dichloro-BPA and 2,6-dichloro-BPA was determined (1/0.25) based on NMR 40 41 spectra. Monochloro-BPA. MS m/z: 261 [M-H]⁻. ¹H NMR (MeOD): δ : 1.56 (6H, s, 2 × CH₃), 6.70 42

43 (2H, dt, J = 3.0, 8.7 Hz, $2 \times$ ArH), 6.79 (1H, d, J = 8.2 Hz, ArH), 6.96 (1H, dd, J = 2.4, 8.5 Hz,

44 ArH), 6.96 (2H, dt, J = 2.3, 8.9 Hz, $2 \times$ ArH), 7.10 (1H, d, J = 2.3 Hz, ArH).

2,6'-Dichloro-BPA. MS m/z: 295 [M-H]⁻. ¹H NMR (MeOD): δ : 1.57 (6H, s, 2 × CH₃), 6.81 45 (2H, d, J = 8.5 Hz, 2 × ArH), 6.95 (2H, dd, J = 2.4, 8.5 Hz, ArH), 7.16 (2H, d, J = 2.3 Hz, 46 ArH). 47 2,6-Dichloro-BPA. MS m/z: 295 [M-H]⁻. ¹H NMR (MeOD): δ : 1.57 (6H, s, 2 × CH₃), 6.71 48 (2H, m, J = 2.2, 8.9 Hz, 2 × ArH), 7.03 (2H, m, J = 2.2, 8.9 Hz, ArH), 7.06 (2H, s, ArH). 49 Trichloro-BPA. MS m/z: 331 [M-H]⁻. ¹H NMR (MeOD): δ : 1.57 (6H, s, 2 × CH₃), 6.84 (1H, d, 50 J = 8.5 Hz, ArH), 6.84 (1H, dd, J = 2.4, 8.5 Hz, ArH), 7.07 (2H, s, 2 × ArH), 7.13 (1H, d, J =51 2.4 Hz, ArH). 52 Synthesis of Chlorinated By-products of 4-Nonylphenol (Mixture of Chain Isomers). 53 Chlorinated NPs were synthesized according to the method reported in a previous study.¹ An 54 55 aqueous solution of sodium hypochlorite (2.5%, 12 ml) was added dropwise to a solution of 56 NP (1.1 g) in 50% methanol (50 ml). The solution was stirred for 3 h and an aqueous solution 57 of sodium sulfite was added. The mixture acidified with 2M hydrochloric acid was extracted with diisopropyl ether. The organic solution was dried over magnesium sulfate and 58 concentrated to 5 mL under reduced pressure. The residue was subjected to the same 59 60 preparative HPLC and C18 column which were used for the isolation of chlorinated BPAs, 61 and the UV detector was at 277 nm to afford two chlorinated NPs, monochloro-NP and dichloro-NP. 60% acetonitrile was increased to 100% in 30 min and then kept for 10 min, 62 63 followed by a decrease to initial conditions of 60% acetonitrile and held for 20 min to allow for equilibration. The products were characterized by ESI-UPLC-MS (Figure S5) and their 64 65 purities were identified by HPLC-UV (Figure S6). Synthesis of Chlorinated By-products of E1. According to the report of Hideyuki 66

S3

67	Nakamura et al., ² an aqueous solution of sodium hypochlorite (0.6 ml, 6% available chlorine)
68	was added to a solution of E1 (1 mmol) in methanol (100 ml) and stirred. After 30 min of
69	stirring at room temperature, an aqueous solution of sodium sulfite was added in an ice bath.
70	The mixture was acidified with 2M hydrochloric acid, and methanol was removed under
71	reduced pressure. The aqueous residue was extracted with dichloromethane after adding
72	sodium chloride. The dichloromethane solution was washed with brine, dried over sodium
73	sulfate and concentrated to 2 mL under reduced pressure. The residue was subjected to the
74	same preparative HPLC and C18 column which were used for the isolation of chlorinated
75	BPAs and NPs, and the UV detector was at 200 nm to afford three chlorinated products,
76	2-chloro-E1, 4-chloro-E1 and dichloro-E1. 40% acetonitrile was kept for 40 min and then
77	increased to 100% in 10 min, followed by a decrease to initial conditions of 40% acetonitrile
78	and held for 20 min to allow for equilibration. The synthesized products were characterized
79	by ESI-UPLC-MS and NMR spectra.
80	2-Chloro-E1. MS m/z: 303 [M-H] ⁻ . ¹ H NMR (Acetone-d ₆): δ: 7.19 (1H, s, 1-H), 6.73 (1H, s,
81	4-H).
82	4-Chloro-E1. MS m/z: 303 [M-H] ⁻ . ¹ H NMR (CDCl3): δ: 7.14 (1H, d, J = 8.6 Hz, 1-H), 6.87
83	(1H, d, J = 8.56 Hz, 2-H).
84	2,4-Dichloro-E1. MS m/z: 337 [M-H] ⁻ . ¹ H NMR (Acetone-d ₆): δ: 7.24 (1H, s, 1-H).
85	Dansylation procedure. According to the method reported in previous paper, ³ the sample
86	extract/ standard solution was dried under a gentle flow of nitrogen and redissolved in 100 μL
87	of aqueous sodium bicarbonate (100 mmol/L, pH adjusted to 10.5 with HCl) and 100 μL of
88	dansyl chloride (1 mg/mL in acetone), vortex-mixed for 1 min and incubated at 60°C for 10

min. Then 1 mL of 18 M Ω water and 2×2 mL of hexane were added. After cooling to room temperature, organic fraction containing dansylated analytes was dried and redissolved with acetonitrile prior to UPLC–MS/MS analysis.

Comparison of Nonylphenol (CAS 84852-15-3) from Different Producers. In order to evaluate the potential deviation of quantification by technical mixture standard obtained from Hayashi (Tokyo, Japan), we compared its signal intensities of dansylated standards with Sigma-Aldrich (USA) and AccuStandard (USA). Figure S7 shows the chromatograms of three standards at 2 μ g/L. According to the peak areas of three standards, the signal differences between Hayashi-NP and NP from other producers were 3% (AccuStandard) and 8% (Sigma-Aldrich).

99 Matrix Effects of Dansylation UPLC-MS/MS Method. Two sets of standard lines were 100 prepared to evaluate the presence of matrix effect. The first set of three standard lines (set 1) 101 was prepared to evaluate the MS/MS response for neat standards of all analytes injected in the 102 mobile phase. The second set (set 2) was prepared in water extracts originating from five 103 different sources and spiked after extraction. By comparing the slopes of the standard lines 104 between the two different sets of standard lines, the presence of matrix effect on the 105 quantification of target analytes was assessed. Figure S8 shows the linearity plots of standard 106 lines using UPLC.

Set 1. Three standard lines were constructed using neat solutions of target analytes in MeOH. By mixing and diluting stock solutions, standard mixture solutions of 0.01, 0.05, 0.1, 0.5, 2, 10, 50 and 100 μ g/L target analytes were prepared and transferred into autosampler vials. 5 μ L was injected directly into the UPLC-MS/MS system. Set 2. Five standard lines were constructed in five different lots of water extracts by following treatments: 1) 1 mL elution of HLB cartridge in 2-mL glass bottle and were dried under gentle nitrogen flow; 2) 100 μ L standard mixture solution of 0.01, 0.05, 0.1, 0.5, 2, 10, 50 and 100 μ g/L target analytes was added to reconstitute 8 sample extracts, respectively.

115 **Matrix Effects of Non-dansylation UPLC-MS/MS Method.** The matrix effect of 116 non-dansylation UPLC-MS/MS method was assessed in the same way as the evaluation of the 117 matrix effect of dansylation method. Figure S9 shows the linearity plots of standard lines 118 using UPLC.

119 Estimation of BPA Equivalent Estrogenic Activity (EQ_{BPA}). The estrogenic activities of 120 chlorinated BPAs in the water samples were estimated by comparison with the activity of BPA 121 and expressed as BPA equivalent (EQ_{BPA}). For the calculation of EQ_{BPA}, the estrogenic effect 122 factors (EEFs), which equals the ratio of EC₅₀ values of a chlorinated BPA and BPA, were estimated to be 7.46 for monochloro-BPA, 4.95 for 2,6'-dichloro-BPA, 1.2 for 123 2,6-dichloro-BPA, 0.588 for trichloro-BPA, and tetrachloro-BPA < 0.193), and the EC_{50} 124 values of chlorinated BPAs were collected from a previous paper.⁴ Thus, we made an attempt 125 126 to calculate the average estrogenic activities of chlorinated BPAs and BPA in drinking water. 127 Although two isomers of dichloro-BPA, 2,6'-dichloro-BPA and 2,6-dichloro-BPA could not 128 be separated chromatographically to determine their respective concentration, our previous 129 study has identified the concentration ratio between 2,6'-dichloro-BPA and 2,6-dichloro-BPA to be 1/0.25,⁵ which provides us the chance to estimate their concentrations in the drinking 130 131 water samples. The total average estrogenic activity of BPA and its chlorinated BPAs in 132 drinking water is displayed in Figure S3. Although the concentrations of chlorinated BPAs as

133	described above were much lower than that of BPA (19.1 ng/L) in drinking water,
134	monochloro-BPA, dichloro-BPA, trichloro-BPA, tetrachloro-BPA and BPA on average
135	accounted for 55±17%, 9.4±7.3%, 1.4±2.1%, <0.1% and 34±18% of the EQ _{BPA} , respectively,
136	showing the significant contribution of monochloro-BPA.
137	

S7

138 **References**

- (1) Kuruto-Niwa, R.; Nozawa, R.; Miyakoshi, T.; Shiozawa, T.; Terao, Y. Estrogenic activity
 of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression
 system. *Environ. Toxicol. Phar.* 2005, *19* (1), 121-130.
- (2) Nakamura, H.; Shiozawa, T.; Terao, Y.; Shiraishi, F.; Fukazawa, H. By-products produced
 by the reaction of estrogens with hypochlorous acid and their estrogen activities. *J. Health Sci.* 2006, *52* (2), 124-131.
- (3) Chang, H.; Wan, Y.; Naile, J.; Zhang, X.; Wiseman, S.; Hecker, M.; Lam, M. H. W.;
 Giesy, J. P.; Jones, P. D. Simultaneous quantification of multiple classes of phenolic
 compounds in blood plasma by liquid chromatography-electrospray tandem mass
 spectrometry. J. Chromatogr. A 2010, 1217 (4), 506-513.
- (4) Kuruto-Niwa, R.; Terao, Y.; Nozawa, R. Identification of estrogenic activity of
 chlorinated bisphenol A using a GFP expression system. *Environ. Toxicol. Phar.* 2002, *12* (1), 27-35.
- (5) Hu, J. Y.; Aizawa, T.; Ookubo, S. Products of aqueous chlorination of bisphenol A and
 their estrogenic activity. *Environ. Sci. Technol.* 2002, *36* (9), 1980-1987.

154

155

FIGURE S2. Drinking water treatment plants (DWTPs) locations across China.

FIGURE S3. UPLC-MS/MS MRM chromatograms of a water sample spiked with low levels of target analytes.

FIGURE S4. Comparison of average concentrations in drinking water (A) with their average equivalent (EQ_{BPA}) of bisphenol A (BPA) and its chlorinated products (B).

FIGURE S5. UPLC-MS chromatogram of synthesized monochloro-NP and dichloro-NP in methanol solution (500 ng/mL) in scan mode.

FIGURE S6(a). HPLC-UV chromatogram and impurities (%) of synthesized monochloro-NP detected at 277nm.

FIGURE S6(b). HPLC-UV chromatogram and impurities (%) of synthesized dichloro-NP detected at 277nm.

FIGURE S7. UPLC-MS/MS chromatograms of three NP standards at $2 \mu g/L$.

FIGURE S8. Linearity plots of standard lines of (a) neat standards and (b) spiked extracts using dansylation UPLC-MS/MS method.

FIGURE S9. Linearity plots of standard lines of (a) neat standards and (b) spiked extracts using non-dansylated UPLC-MS/MS method.

DWTP	Source	TOC	Residual	Sampling Time	Temperature
	Water	(mg/L)	Chlorine (mg/L)		(°C)
DWTP-1	R	5.45	0.1	08/17/2011	17 - 22
DWTP-2	R	4.07	NA	08/17/2011	22 - 23
DWTP-3	RW	3.82	0.66	08/19/2011	16 - 18
DWTP-4	GW	NA	0.07	08/23/2011	15 - 15
DWTP-5	RW	NA	0.3	08/25/2011	5.5 - 7
DWTP-6	R	NA	NA	08/28/2011	NA
DWTP-7	RW	1.45	0.06	09/14/2011	16 - 16.5
DWTP-8	RW	2.20	0.75	09/16/2011	NA
DWTP-9	RW	1.64	0.38	09/16/2011	24.5 - 25
DWTP-10	R	2.97	NA	09/20/2011	NA
DWTP-11	GW	1.06	0.49	09/20/2011	NA
DWTP-12	R	2.49	0.93	09/20/2011	NA
DWTP-13	R	1.63	0.41	09/20/2011	NA
DWTP-14	R	2.47	0.4	10/10/2011	17.5 - 18
DWTP-15	R	2.28	0.32	10/10/2011	12.5 - 17
DWTP-16	RW	NA	0.29	10/14/2011	24 - 25
DWTP-17	RW	1.61	0.31	10/14/2011	23 - 27
DWTP-18	RW	1.94	NA	10/25/2011	NA
DWTP-19	RW	2.41	0.95	10/25/2011	22 - 23
DWTP-20	RW	1.70	0.6	10/28/2011	NA
DWTP-21	R	2.19	NA	10/28/2011	26.6 - 27
DWTP-22	R	2.16	0.39	11/02/2011	27.5 - 28
DWTP-23	R	2.28	0.61	11/02/2011	NA
DWTP-24	R	2.17	0.67	11/02/2011	NA
DWTP-25	R	2.23	NA	11/02/2011	NA
DWTP-26	RW	1.11	0.26	11/22/2011	21.4 - 21.5
DWTP-27	RW	2.67	0.04	11/23/2011	22 - 22.2
DWTP-28	R	2.11	0.5	11/24/2011	20 - 20.5
DWTP-29	RW	1.98	0.4	11/24/2011	NA
DWTP-30	R	NA	0.1	11/28/2011	19 - 19.6
DWTP-31	R	NA	0.5	11/28/2011	17.5 - 18
DWTP-32	RW	NA	0.33	12/05/2011	15.9 - 18.5
DWTP-33	RW	3.10	0.47	12/05/2011	12.5 - 13.5
DWTP-34	RW	5.30	NA	12/08/2011	NA
DWTP-35	RW	2.53	NA	12/08/2011	NA
DWTP-36	R	2.38	1.09	12/08/2011	12 - 14
DWTP-37	RW	2.28	0.67	12/13/2011	11 - 12
DWTP-38	RW	2.28	0.43	12/13/2011	12.4 - 12.6

TABLE S1. Located Cities, Sampling Time, Residual Chlorine, Temperature (Source - Finished) and Source Water Type of Drinking Water Treatment Plants.

(continued)					
DWTP	Source	TOC	Residual	Sampling Time	Temperature
	Water	(mg/L)	Chlorine (mg/L)		(°C)
DWTP-39	R	1.74	NA	12/30/2011	12 - 15
DWTP-40	RW	2.37	0.08	12/30/2011	10 - 11
DWTP-41	RW	NA	0.44	01/05/2012	NA
DWTP-42	GW	1.75	NA	02/27/2012	NA
DWTP-43	GW	1.30	0.2	02/27/2012	NA
DWTP-44	RW	2.62	NA	02/27/2012	7 - 11.5
DWTP-45	GW	0.73	0.31	03/02/2012	11.9 - 16.1
DWTP-46	GW	0.51	0.26	03/02/2012	15 - 16
DWTP-47	R	2.35	0.4	03/02/2012	2 - 3
DWTP-48	GW	3.14	NA	03/09/2012	NA
DWTP-49	R	2.55	NA	03/09/2012	6.9 - 7.6
DWTP-50	GW	1.15	NA	03/09/2012	13.5 - 18
DWTP-51	R	NA	0.3	03/13/2012	NA
DWTP-52	RW	3.15	0.24	03/13/2012	6 - 6.5
DWTP-53	R	0.87	0.2	05/08/2012	NA
DWTP-54	R	2.45	0.22	05/15/2012	NA
DWTP-55	R	3.65	0.12	05/15/2012	10 - 10.8
DWTP-56	R	NA	NA	05/17/2012	NA
DWTP-57	R	4.01	NA	05/18/2012	NA
DWTP-58	R	4.51	NA	05/18/2012	14.3 - 14.8
DWTP-59	R	2.52	0.57	05/21/2012	7.4 - 14.6
DWTP-60	R	3.08	NA	05/24/2012	19.5 - 21.7
DWTP-61	R	2.86	NA	05/31/2012	NA
DWTP-62	R	2.46	NA	05/31/2012	NA

* R: reservoir; RW: river water; GW: groundwater.

Substance	Dansyl Derivatives	MRM	Cone voltage (V)	Collision
		transition		energy (eV)
E1	E1-dansyl	504>171	58	34
		504>156		60
E1-d4	E1-d4-dansyl	508>171	45	43
		508>156		60
2-chloro-E1	2-ClE1-dansyl	538>156	46	60
		538>171		55
4-chloro-E1	4-ClE1-dansyl	538>156	46	60
		538>171		55
dichloro-E1	diClE1-dansyl	572>171	40	50
		572>156		60
Ε2β	E2β-dansyl	506>171	50	45
		506>156		58
E2β-d3	E2β-d3-dansyl	509>171	65	35
		509>156		60
chloro-E2	ClE2-dansyl	540>171	55	41
		540>156		60
dichloro-E2	diClE2-dansyl	574>171	43	42
		574>156		60
BPA	BPA-(dansyl) ₂	695>171	60	30
		695>156		40
d4-BPA	d4-BPA-(dansyl) ₂	699>171	60	30
		699>156		55
monochloro-BPA	MCBPA-(dansyl) ₂	729>171	52	50
		729>156		60
dichloro-BPA	DCBPA-(dansyl) ₂	763>171	55	58
		763>156		60
trichloro-BPA	TCBPA-dansyl	566>171	45	55
		566>156		60
tetrachloro-BPA	TeBPA-dansyl	600>171	44	38
		600>156		58
NP	NP-dansyl	454>156	50	60
		454>171		45
4-n-NP	4-n-NP-dansyl	454>171	50	60
		454>156		60
chloro-NP	ClNP-dansyl	488>156	45	60
		488>171		60
dichloro-NP	diClNP-dansyl	522>156	40	60
		522>171		45

TABLE S2. Multi-selected Reaction Monitoring (MRM) Conditions of the Target Analytes.

Substance	MeOH/MTBE (v/v 1:1)	MeOH	MTBE
E1	109 ± 2	89 ± 3	86 ± 6
E1-d4	117 ± 5	102 ± 4	116 ± 9
2-chloro-E1	119 ± 13	101 ± 4	68 ± 4
4-chloro-E1	100 ± 12	126 ± 6	76 ± 9
dichloro-E1	87 ± 5	76 ± 11	91 ± 13
Ε2β	117 ± 11	78 ± 8	78 ± 2
E2β-d3	119 ± 8	104 ± 2	97 ± 14
4-chloro-E2	99 ± 2	102 ± 11	62 ± 20
dichloro-E2	72 ± 13	73 ± 24	72 ± 12
BPA	123 ± 6	105 ± 5	51 ± 8
BPA-d4	115 ± 19	103 ± 1	46 ± 14
monochloro-BPA	113 ± 22	133 ± 2	42 ± 1
dichloro-BPA	115 ± 2	79 ± 3	54 ± 3
trichloro-BPA	92 ± 8	94 ± 13	56 ± 6
tetrachloro-BPA	97 ± 5	100 ± 12	85 ± 10
NP	100 ± 22	48 ± 12	108 ± 16
4-n-NP	91 ± 8	36 ± 21	86 ± 19
chloro-NP	83 ± 17	35 ± 2	100 ± 7
dichloro-NP	81 ± 15	24 ± 12	98 ± 5

TABLE S3. Recoveries (%) of Target Analytes Employing Oasis HLB Extraction fromWater Samples Eluting with Different Elution Solvents (n=3, spiked with 150 ng/L).

	Sourc	e Wate	er		Drinki	ing Water									
DWTP	E1	E2	BPA	NP	E1	2Cl-E1	E2	BPA	Cl-BPA	2Cl- BPA	3Cl- BPA	4Cl- BPA	NP	Cl-NP	2Cl-NP
1	1.6	0.2	64.6	309	0.2	ND	0.0	2.5	11.5	1.4	ND	ND	30.3	0.2	ND
2	0.6	0.1	9.9	123	0.1	0.1	ND	3.1	0.7	0.8	1.8	0.2	18.0	0.2	ND
3	2.8	0.7	97.2	421	0.2	ND	0.0	4.6	2.7	1.5	ND	ND	84.1	3.3	ND
4	1.0	0.2	26.1	81.7	0.4	0.1	0.1	5.4	1.0	0.3	0.2	0.0	8.3	0.3	ND
5	4.3	ND	81.3	87.7	1.2	ND	ND	28.8	14.4	1.1	ND	ND	11.3	1.1	ND
6	1.5	0.5	45.3	155	0.6	0.1	ND	5.4	1.6	0.9	5.0	0.3	50.0	0.1	ND
7	3.1	0.3	28.4	355	0.8	ND	0.0	9.9	1.7	0.2	0.1	ND	116	0.9	ND
8	0.9	0.1	25.3	113	0.1	ND	0.0	5.0	0.7	0.2	ND	ND	31.9	0.1	ND
9	0.5	ND	49.0	480	1.7	0.1	0.1	29.4	1.6	0.1	0.8	0.0	114	1.6	ND
10	2.6	0.3	47.0	257	0.8	ND	0.0	11.0	1.2	0.5	0.1	0.7	202	0.3	0.3
11	0.9	0.1	21.2	293	0.4	ND	0.0	6.2	3.0	1.9	1.6	0.6	58.6	5.5	0.4
12	1.7	0.2	46.5	592	ND	ND	ND	22.3	1.8	0.9	ND	0.3	558	13.3	ND
13	1.6	0.2	64.6	309	0.2	ND	0.0	2.5	11.5	1.4	ND	ND	30.3	0.2	ND

TABLE S4. Concentrations (ng/L) of BPA, NP, Estrogens and Their Chlorinated By-products in Source Water and Drinking Water of DWTPs.

(continued)	
(commuted)	

14	2.7	0.1	80.6	134	0.9	0.1	0.1	18.5	1.4	2.5	ND	ND	57.6	0.2	ND
15	1.1	0.1	17.1	40.0	1.1	ND	0.0	9.2	2.9	1.9	ND	ND	20.6	0.3	ND
16	1.6	0.1	98.4	165	0.9	ND	0.0	20.7	4.1	1.0	2.2	ND	74.2	0.3	ND
17	0.4	ND	49.9	40.8	0.7	0.1	0.1	9.3	1.7	0.5	0.7	ND	25.5	ND	ND
18	0.5	ND	331	71.5	0.3	ND	ND	22.5	13.8	5.1	3.4	0.1	11.7	0.1	ND
19	0.6	0.1	41.4	45.3	0.1	ND	ND	5.4	1.2	0.5	1.7	0.3	16.8	3.2	ND
20	1.0	0.1	34.2	821	0.5	ND	0.1	16.2	1.3	1.9	2.1	0.4	446	4.3	ND
21	1.3	0.1	132.4	25.4	0.6	ND	0.1	22.0	9.0	6.3	4.5	0.1	9.3	0.5	ND
22	0.6	0.1	81.1	34.2	0.1	ND	0.1	10.0	2.2	3.5	4.4	1.0	23.2	0.3	ND
23	0.4	0.1	42.6	66.4	0.2	ND	0.0	10.1	3.6	0.9	1.6	ND	15.3	4.2	ND
24	0.4	ND	5.1	187	0.1	ND	0.0	ND	1.0	0.1	ND	ND	26.9	0.3	ND
25	2.0	0.0	20.5	751	0.3	ND	ND	7.6	4.9	2.2	ND	ND	297	0.7	ND
26	0.5	ND	15.8	165	0.1	ND	ND	5.5	2.0	0.2	0.7	0.1	22.9	3.0	ND
27	1.4	0.4	47.1	63.6	0.1	ND	0.1	11.3	3.1	1.2	1.3	0.2	15.1	3.6	1.6
28	1.8	0.6	82.6	277	0.9	0.1	0.1	22.6	6.1	0.6	7.7	4.8	74.4	ND	ND
29	1.4	0.1	89.2	112	0.3	0.1	0.1	33.7	10.3	0.9	1.2	0.2	101	1.0	ND

(continued)

30	0.3	0.1	24.6	78.3	ND	ND	ND	6.6	2.6	0.4	0.6	0.2	ND	0.6	ND
31	1.2	ND	15.9	191	0.5	0.1	0.1	3.5	4.8	0.8	ND	ND	35.6	4.6	ND
32	0.9	0.1	18.7	726	0.2	ND	ND	3.8	3.7	0.4	1.5	0.7	91.7	0.2	ND
33	1.3	0.1	65.4	68.2	0.9	ND	0.1	33.1	1.9	0.2	ND	ND	35.5	0.2	ND
34	3.3	0.2	81.6	485	1.2	ND	ND	35.0	3.2	0.5	0.6	ND	67.2	0.9	ND
35	0.4	ND	59.2	534	ND	ND	ND	6.2	2.0	0.2	0.2	0.1	29.2	0.4	ND
36	0.5	0.0	18.6	122	0.2	ND	0.0	5.9	4.8	1.0	1.0	0.4	36.9	1.8	ND
37	0.7	ND	317	36.8	0.4	ND	0.1	68.1	9.5	3.2	1.9	1.2	16.0	ND	ND
38	0.3	0.0	378	12.5	ND	ND	ND	67.2	5.8	2.8	2.0	0.4	11.8	0.1	ND
39	0.2	0.0	4.7	10.2	0.1	ND	ND	6.1	1.0	0.3	0.4	0.1	10.3	ND	ND
40	1.9	0.1	71.0	47.2	0.6	ND	0.0	30.1	1.3	0.2	0.5	0.4	19.1	0.3	ND
41	0.0	ND	81.3	361	0.1	ND	ND	15.1	9.7	1.1	2.6	0.4	117	5.6	ND
42	0.3	0.1	72.9	178	0.4	ND	ND	51.1	6.0	0.4	0.4	0.2	ND	0.2	ND
43	2.4	ND	50.2	22.8	0.8	ND	0.1	16.0	6.5	1.2	3.3	0.7	ND	0.9	ND
44	3.3	ND	32.1	33.5	0.3	ND	ND	7.3	3.6	0.2	ND	ND	17.7	0.4	ND
45	9.9	3.1	79.0	122	0.1	ND	ND	3.1	7.5	2.2	ND	ND	ND	0.5	1.2

(continued)

46	5.0	ND	169	257	0.2	ND	0.04	14.4	1.1	0.3	ND	ND	95	ND	ND
47	0.1	0.03	178	33.2	ND	ND	ND	55.5	9.5	1	2.5	0.9	ND	0.1	ND
48	0.4	0.03	24.7	26.7	0.2	0.2	ND	5.7	1.7	0.8	ND	ND	6.9	1.4	ND
49	2	0.2	33.1	46.4	0.05	ND	ND	ND	1.0	0.6	ND	ND	ND	0.4	ND
50	0.3	0.03	59.6	83.4	0.2	ND	0.03	ND	7.5	0.5	1.1	0.2	9.2	0.6	ND
51	8.2	1.4	512	308	0.2	ND	ND	49.6	26.7	3.7	1.8	0.5	8.1	0.1	ND
52	1.2	ND	275	121	0.1	ND	ND	13.0	5.1	0.3	ND	ND	23.3	0.8	ND
53	1.6	ND	124	37.2	0.4	ND	ND	3.2	0.3	0.2	ND	ND	34.5	0.5	ND
54	7	ND	322	137	1.2	ND	ND	83.6	13.2	5.6	ND	ND	56.2	0.9	ND
55	0.7	ND	246	918	0.2	ND	ND	127.5	16.7	ND	ND	ND	245	1.7	ND
56	0.5	ND	38.4	217	0.4	ND	ND	20.9	4.9	1.7	0.8	ND	95.6	0.6	ND
57	2.3	ND	127	11.9	ND	ND	ND	16.3	1.2	0.3	0.4	ND	7.9	0.2	ND
58	3.4	ND	59.0	15.6	ND	ND	0.03	2.8	0.4	0.1	ND	ND	4	0.1	ND
59	0.2	ND	13.9	8.2	ND	ND	ND	2.6	0.2	0.06	ND	ND	9.5	0.6	ND
60	1.2	ND	10.6	259	0.08	ND	ND	4.7	0.8	0.08	ND	ND	ND	0.3	ND
61	1.9	ND	59.5	247	0.2	ND	0.03	30.1	2	0.6	ND	ND	17.8	0.4	ND
62	0.5	ND	21.1	154	0.2	ND	0.1	5.7	1.8	0.7	ND	ND	27	0.5	ND

Chlorinated NPs.			
	Residual Chlorine	TOC	Average Temp.
Chlorinated BPAs	p = 0.355	p = 0.604	p = 0.966

p = 0.449

p = 0.006

Chlorinated NPs

p = 0.111

Table S5. Pearson's Correlation Analysis Result of Correlations between Residual Chlorine, TOC or Temperature and Total Molar Concentration of Chlorinated BPAs or Chlorinated NPs.